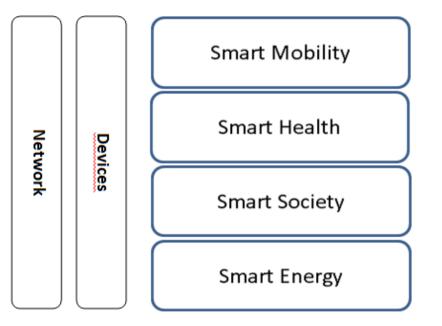
CATRENE workshop on SmartCities

Security chapter

PEBAY-PEYROULA Florian (CEA-Leti) AMBACHER Oliver (Fraunhofer IAF) HENNEBERT Christine (CEA-Leti) MAURER Anne-Julie (Fraunhofer IAF) TUOT François (Gemalto) VUICINIC Malisa (ST)

CATRENE workshop on SmartCities – Security

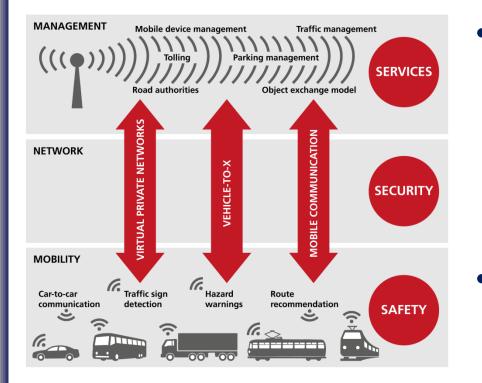

FUTURE KEY PRODUCTS

Smart domains and security requirements

- Smart domains
- Security requirements
 - Secure identification
 - Secure firmware
 - Secure communication
 - Component integrity
 - Quality of service, availability
 - Resilience (in case of a major event)
 - Secure deployability

Domain / security matrix

Domain It	em Thi	eats R	lisks	Main security
				requirements
		Tamper of meter (modify consumption recover keys)	, Fraud with economic loss Power loss	Hardware electronic integrity Secure identification
		Eavesdropping of consumption and bill data	ling User privacy violation User Behavior recording	Secure communication
	Heating sensor at ho	me Tamper of sensor (modify consumption	n) Fraud with economic loss	Hardware sensor integrity
Smart Health	Air pollution sensor	Eavesdropping of communication	Extraction of information for other purposes	No security requirements
		Tamper device configuration Non trusted firmware	False information reported Inappropriate decision taken	Secure firmware Secure identification
	Medical file privacy	Cyber-attacks on servers	Access to sensitive personal data User privacy	Secure identification Linkability to a person
		Eavesdropping during connections	Identity usurpation	Secure communication
nart	Heating	Tamper of sensor (modi	fy Fraud with economic	Hardware sensor
nergy	sensor at	consumption)	loss	integrity
	home			
	individuals		User privacy	Hardware electronic integrity
		Modification of various sensors	Wrong information reported to system	Hardware sensor integrity
Smart Society	ty e-Administration	Network attacks	Untrusted websites collecting user credentials for fraud	Secure communication
		Phishing	Identity usurpation User privacy	Secure identification
	Safe city	Denial of service of a security device	Public security attempt Economic loss	Quality of service, availability Resilience
		Tamper device configuration	False information reported	Secure deployability
		Non trusted firmware	Inappropriate decision taken	Secure firmware
		Sensor cloning		Hardware electronic integrity

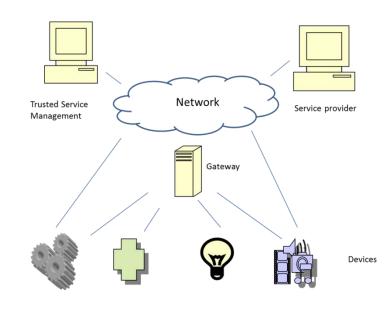

CATRENE workshop on SmartCities – Security

TECHNOLOGICAL REQUIREMENTS

Secure generation of information

Sensor needs

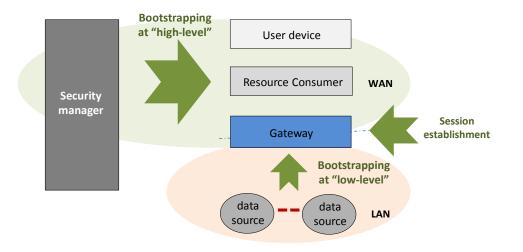
- high data rates
- secure measurement
- secure transmission
- high reliability & robustness
- low acquisition and operation costs
- Safe & secure cities
 - Eg. traffic management
 - Secure vehicle navigation
 - Efficient traffic opimization
 - Vehicle automation
 - Pedestrian safety avoiding collisions



Authentication, Authorization, Access control and Privacy

- Network topology
 - People
 - Devices
- Need strong authentication

 Not: login/password
- Consistent access control
 - Network heterogeneity
- Privacy always a challenge
 - Business is on data also



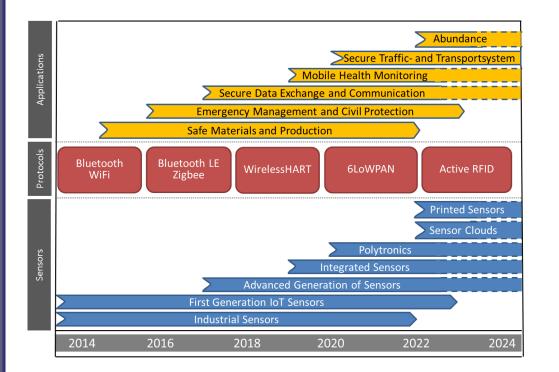
Bootstraping and deployment

- How an user to personalize a virgin node into his network?
 - Lowlevel boostraping: local credentials (eg. network access)
 - Highlevel bootstraping: access to the resources (eg. Service)
- Directions
 - In-band pairing
 - Out-band pairing
 - Secure storage
 - Preshared certificates

Need for secure anchors in small & cheap objects

Peer Authentication with DTLS

- End to end security
- Important need of memory for each session key
- Handshake performance in radio duty-cycled networks
- Authorization with OAuth 2.0
 - Strong link with IETF
 - Application Level Security: CoAP
- Trust Anchor Provisioning and Ownership Management
 - TPM like for constrained objects


CATRENE workshop on SmartCities – Security

ROADMAP & ECONOMIC IMPACT

Roadmap

- Microeletronic needs
 - Modern concepts
 - Algorihms
 - Filters
 - Chemistry sensors
 - Novel materials and technos
 - Printable
 - Nano-tubes/catalysts
 - New devices
 - Energy
 - datarate vs range
 - Robustness
 - Innovative systems
 - Data exchange btw infrastuctures
 - Monitoring...

Strategic Research & Economic Impact

- Research areas to be investigated in future calls
 - Bootstrapping using out-of-band channels and standard IP protocols
 - Handshake performance & memory session management improvements
- Economic impact for component manufacturer
 - Market SmartCities: 8.1B in 2010 -> 39.5B in 2016
 - Security market: 60M in 2018 -> 1.8B in 2024
- Perceived insecurity of wireless sensors networks is a major inhibitor to further market growth

