Smart Cities Workshop 14.04.2015

Mobility in Smart Cities

Overview: Top-down approach

- Application-pull for "Smart" Mobility
 - Autonomous driving
 - Demand-driven traffic flow control
 - On-demand transportation
- Technological requirements
 - Data acquisition / Sensors and actuators
 - Vehicle-to-vehicle/infrastructure communication
 - Energy efficient traction
- Demand for semiconductor devices

Overview

- Application-pull for "Smart" Mobility
 - Autonomous driving
 - Demand-driven traffic flow control
 - On-demand transportation
- Technological requirements
 - Data acquisition / Sensors and actuators
 - Vehicle-to-vehicle/infrastructure communication
 - Energy efficient traction
- Demand for semiconductor devices

Application pull for "Smart Mobility"

- Citizen-oriented transportation solutions
 - Autonomous driving
 - Demand-driven traffic flow control
 - On-demand transportation
- Advantages for the City
 - More efficient use of existing infrastructure (i.e. streets)
 - Less delays, less pollution, stress-reduction for drivers
 - Faster traffic flow and shorter time-to-destination
 - → Power of IoT in Mobility to sky-rocket Smart Cities
 - Mobility in Smart Cities provides new opportunities

- Today: Traffic governed by decision of drivers
 - Lack of information for anticipatory driving
 - Reckless driving, Driver related delays
 - At green light, roundabouts, etc.
- System requirements for autonomous driving
 - Distance radar, automatic throttle (cruise control)
 - Automatic parking pilot,
 - Traffic sign identification, traffic tracking
 - Position tracking (GPS), ...

 \rightarrow All necessary sensors and actuators demonstrated

- First seeds for autonomous driving sprouting
 - "Autonomous driving lane" on German highway A9
 - Playing grounds for IoT
 - Delphi Automotives' Audi SUV
 - Cross-country trip from SF to NY
 - Autonomous driving is reality

- However: Highest traffic density in urban areas

- Prevention of unnecessary delays
 - Adaptive traffic lights with flexible phase schedule
 - Fixed Phase (no control) todays "favorite"
 - No sensors required
 - Flexible Phases
 - Inductive loops, sensors
 - On-approach detection
 - V2I communication
 - Traffic-light-free intersection
 - V2I and V2V communication
 - Destination information

Traffic lights with bus priority system in Erlangen

Today

Smart City

Information-assisted driving: Basic traffic flow control

- Prevention of unnecessary delays
 - Green Light Optimal Speed Advisory
 - Notifies driver of speed to catch green light
 - Infrastructure to user via (App), I2V communication

Traffic-app "EnLighten" feeds off real-time traffic data supplied by several US cities

Audi's "Car-2-x" fleet test

- Prevention of unnecessary delays
 - Traffic-light-free intersection control in roundabouts
 - "Vehicle back-off" for collision prevention
 - → Increases vehicle capacity per hour

Desaraju et al., "Partial Order Techniques for Vehicle Collision Avoidance: Application to an Autonomous Roundabout Test-bed", ICRA 2009

Demand-dependent traffic flow control

- Utilization of existing infrastructure (roads)
 Today: Priority lanes (buses, taxis, car pooling)
 - Permanent or (fixed) temporary
 - Occurance-driven but not demand-driven!

Static car pooling ("diamond") lane in Canada

Bus lane in Germany

Demand-dependent traffic flow control

- Better utilization of existing infrastructure
 - Smart City: Collect/provide data on users' destination
 - Traffic flow becomes predictable
 - → Individual detour planning and re-routing
 - Synergizes with navigation systems
 - » Already proven with Radio Traffic Messages
 - Requires car-to-cloud (*e*-infrastructure) communication

Origin and destination analysis (e.g. BlipTrack)

Demand driven last mile transportation

Key acceptance issue for public transportation

Car / Taxi	Bus / Tram / Subway	
At door-step	At "vicinity" of destination	
Ride on-demand	Fixed schedule	
Priority lanes	Priority lanes + traffic flow mod.	
Single user \rightarrow Expensive	Multiple users \rightarrow Cost-sharing	

- Smart City: IoT enables demand-driven solutions

 Customers <u>voluntarily provide destination</u> and schedule requests to local transportation operators

\rightarrow Take a bus or a taxi? \rightarrow P&R and take a "buxi"?

Interaction with other aspects of Smart cities

- EV-based energy storage
 - Utilization of electric vehicle traction batteries
 - Peak-cutting and peak-shifting of power supply
 - See "Smart Energy"
 - Business models for EV owners?
 - EU (H2020) SME calls on business models
 - ICT Strategy: Digital Germany 2015

Illustration: Hitachi

(YSCP Project)

Charge & Discharge Management EV Data Center Center EV Car Share and charge Charge & Discharge EV Car Share and charge Charge & Discharge Charge & Discharge

Interaction with other aspects of Smart cities

- Parking space surveillance
 - Overhead mounted radar sensors
 - Vacant parking lots
 - Parking violations (bus lanes, bicycle lanes etc.)
 - Transmission to data center by GSM/UMTS
 - Data processing using IoT platform
 - Traffic forecasting
 - RFID tag capability
 - Assignment of (special) parking permits to vehicles
 - Pilot phase designated in Berlin, Germany

Photos: Siemens

Overview

- Application-pull for "Smart" Mobility
 - Autonomous driving and demand-driven traffic flow control
 - On-demand transportation
- Technological requirements
 - Data acquisition / Sensors and actuators
 - Vehicle-to-vehicle/infrastructure communication
 - Energy efficient traction
- Demand for semiconductor devices

Demanding applications for Mobility

- Information collection (sensing)
 - − Fast acquisition rates, low power consumption
 → Compact, precise, durable
- Information transmission ("Big data", IoT)
 - − High data rates to cope with additional information
 → Large bandwidth, secure
- Energy "transmission" (converters, inverters)
 Autarc systems, small form-factors for vehicles
 → High energy efficiency, small size/weight, reliable

V2V and V2I communication and sensors

Interaction with environment

- 77 GHz Radar
- Sensors
 - CCD-Cameras
 - IR and UV sensor array
- 5.9 GHz Wireless-LAN
 - e.g. IEEE 802.11p
 - "Cooperative Awareness Messages"

	Application	Detection Range	Safety Aspect	Technology
	Adaptive Cruise Control	200 meters	Normal driving, accident avoidance	• 77 GHz Radar
/	Pre-Crash	30 meters	Accident, mitigation of impact	 77 GHz Radar/24 GHz Radar 76/81 GHz Radar
	Blind Spot Detection	20 meters	Normal driving, accident avoidance	• 77 GHz/24 GHz Radar/ Vision sensor
	Lane Departure Warning	60 meters	Normal driving, accident avoidance	• Vision sensor
	Stop and Go	30 meters	Normal driving, accident avoidance	• 77 GHz/24 GHz Radar • 76/81 GHz Radar

Energy efficient traction

- Traction inverters and bus supply
 - Low volume, weight
 - High efficiency
 - → High switching frequencies required
 - System components
 - Vehicle traction and power supplies
 - Integrated power converters

Single-wheel axle drive with attached double inverter

Potential benefits of using SiC / GaN power devices

Overview

- Application-pull for "Smart" Mobility
 - Autonomous driving and demand-driven traffic flow control
 - On-demand transportation
- Technological requirements
 - Data acquisition / Sensors and actuators
 - Vehicle-to-vehicle/infrastructure communication
 - Energy efficient traction
- Demand for semiconductor devices

Technological requirements for Mobility

- RF information transmission
 - Increasing frequencies (higher data throughput)
 - RF power amplifiers (Class-C, Class-S) Available voltage for amplifier
 - GaN HEMTs, Si-RF CMOS
 - Envelope tracking
 - Si LDMOS (integrated in front-end)
 - GaN HEMT (integrated in PA/supply)
 - Integrated RF CMOS circuits
 - 90nm CMOS and below
 - → More-Moore integration
 - Hardware encryption

Envelope tracking reduces RF power losses

Data acquisition for Mobility

Information collection

- Specialized sensors and sensor networks
 - Distance, velocity, acceleration
 - Small form factors
 - Combination with transmission/broadcasting circuits
 - 3D chip stacking
 - Sensor platforms
 - → More-than-Moore integration

EU FP7: MultiSensorPlatform, Foundry service for Outdoor Environmental Monitoring (ams)

Energy "transmission"

Energy "transmission"

Long global wiring: several millimeter

- Low power application
 - Low volume, weight
 - High efficiency
 - → High switching frequencies required

Functional block

EU FP7: ATHENIS_3D

High-voltage automotive technology platform

- Integrated power converters
 - Integration density
 - » 3D-stacking
 - » Integrated passives
 - → More-than-Moore integration

Short TSV: ~30 μm

3D IC

Conclusion

- Application-pull for Mobility in Smart Cities
 - Traffic prediction and optimization yields benefits
 - Individual traffic: "Fastest way through the city"
 - Public transportation: Efficient last-mile transportation
 - The City: Less traffic, less pollution, more sustainability
 - High technology demands for "best-in-class" solutions
 - Sensor networks with high data transmission
 - Connectivity to Internet-of-things, "Big data" handling
 - Combination with ICT: Safety Reliability Robustness

→ Typical Mobility demands: Synergy with Smart Cities

